Conversion of Coordinated Carbon Monoxide into Carbon Dioxide via Oxygen-Atom Transfer from Coordinated Nitrite: Thermolysis of $Ru(NO_2)_2(CO)_2(PPh_3)_2$

David T. Doughty, Robert P. Stewart, Jr.,* and Gilbert Gordon

Contribution from the Department of Chemistry, Miami University, Oxford, Ohio 45056. Received October 2, 1980

Abstract: The thermolysis (111 °C, toluene solution) of Ru(NO₂)₂(CO)₂(PPh₃)₂ in the presence of excess PPh₃ proceeds according to the stoichiometry $Ru(NO_2)_2(CO)_2(PPh_3)_2 + PPh_3 \rightarrow Ru(NO)_2(PPh_3)_2 + CO_2 + CO + Ph_3PO$. Two highly selective oxygen-atom transfer processes are involved in the overall thermolysis reaction: (i) $Ru(NO_2)_2(CO)_2(PPh_3)_2 \rightarrow Ru-(ONO)(CO)(NO)(PPh_3)_2 + CO_2$; (ii) $Ru(ONO)(CO)(NO)(PPh_3)_2 + PPh_3 \rightarrow Ru(NO)_2(PPh_3)_2 + CO + Ph_3PO$. The intermediate complex Ru(ONO)(CO)(NO)(PPh₃)₂ was synthesized independently and has been characterized by analytical and spectral methods. The thermolysis of Ru(N¹⁸O₂)₂(CO)₂(PPh₃)₂ unambiguously establishes coordinated NO₂⁻ as the source of oxygen in the conversion of coordinated CO into CO₂. Moreover, the extent of ¹⁸O enrichment in the CO₂ product indicates that *statistical* scrambling of oxygen occurs between nitrogen and carbon atoms prior to the loss of CO₂. The results of a double-label study involving the thermolysis of $Ru(N^{18}O_2)_2(CO)_2(PPh_3)_2$ and $Ru(NO_2)_2(^{13}CO)_2(PPh_3)_2$ are consistent with an intermolecular mechanism for oxygen-atom transfer from NO₂⁻ to CO. Additional mechanistic implications are discussed.

Introduction

The ability of CO to reduce coordinated NO₂⁻ to coordinated NO (eq 1) is well documented in the literature.¹⁻¹³ Although

$$M(NO_2)L_n + CO \rightarrow M(NO)L_n + CO_2$$
(1)

the synthetic aspects of eq 1 have been recognized for some time,¹⁻¹⁷ mechanistic details were nonexistent until recently. A frequently invoked^{4,6,9} mechanism for this type of reaction is the intramolecular oxygen-atom transfer process shown in Scheme I. Our recent ¹⁸O-labeling study¹⁰ of reaction 2 represents the

trans-Ni(NO₂)₂(PEt₃)₂ + CO \rightarrow $Ni(NO_2)(NO)(PEt_3)_2 + CO_2$ (2)

first operational test of this mechanism. This study¹⁰ provided unambiguous experimental confirmation of oxygen-atom transfer from coordinated NO₂⁻ to coordinated CO in the production of CO₂. However, the oxygen-atom transfer was found to be more complex than the simple irreversible process depicted in Scheme I. The observed ¹⁸O enrichment of the CO₂ product from eq 2 indicated that significant-but not statistical-oxygen scrambling

- (3) Hughes, W. B. Chem. Commun. 1969, 1126.
- (4) Grundy, K. R.; Laing, K. R.; Roper, W. R. Chem. Commun. 1970, 1500.
- (5) Kiji, J.; Yoshikawa, S.; Furukawa, J. Bull. Chem. Soc. Jpn. 1970, 43, 3614.
- (6) Bhaduri, S.; Johnson, B. F. G.; Savory, C. J.; Segal, J. A.; Walter, R. H. J. Chem. Soc., Chem. Commun. 1974, 809.
- (7) Haymore, B. L.; Ibers, J. A. J. Am. Chem. Soc. 1974, 96, 3325.
 (8) Ugo, R.; Bhaduri, S.; Johnson, B. F. G.; Khair, A.; Pickard, A.; Benn-Taarit, Y. J. Chem. Soc., Chem. Commun. 1976, 694.
- (9) Bhaduri, S.; Johnson, B. F. G.; Matheson, T. W. J. Chem. Soc., Dalton Trans. 1977, 561.
- (10) Doughty, D. T.; Gordon, G.; Stewart, R. P., Jr. J. Am. Chem. Soc. 1979, 101, 2645.
- (11) Feltham, R. D.; Kriege, J. C. J. Am. Chem. Soc. 1979, 101, 5064. (12) Dubrawski, J.; Kriege-Simondsen, J. C.; Feltham, R. D. J. Am. Chem. Soc. 1980, 102, 2089.
- (13) Kirtley, S. W.; Chanton, J. P.; Love, R. A.; Tipton, D. L.; Sorrell, T. N.; Bau, R. J. Am. Chem. Soc. 1980, 102, 3451.
- (14) Johnson, B. F. G.; McCleverty, J. A. Prog. Inorg. Chem. 1966, 7, 277. (15) Griffith, W. P. Adv. Organomet. Chem. 1968, 7, 211.
- (16) Connelly, N. G. Inorg. Chim. Acta Rev. 1972, 6, 44.
 (17) Caulton, K. G. Coord. Chem. Rev. 1975, 14, 317.

reversible during the lifetime of the intermediate(s) involved. We have proposed¹⁰ a minor modification of Scheme I which is sufficient to provide a mechanism consistent with the ¹⁸O labeling results. It should be pointed out that suubsequent kinetic studies¹ of the closely related system in eq 3 are in complete accord with this modified mechanism. $Ni(NO_2)_2(dppe) + CO \rightarrow Ni(NO_2)(NO)(dppe) + CO_2$ (3)

occurs between nitrogen and carbon atoms prior to the loss of CO₂. Thus, in this system at least, oxygen-atom transfer is appreciably

In spite of the detailed studies of reactions 2 and 3, several important mechanistic features regarding the oxygen-atom transfer process have yet to be delineated. First, it was not possible to experimentally rule out an intermolecular mechanism for the nickel systems.^{10,11} Moreover, it remains to be seen whether the oxygen-atom scrambling observed for eq 2 is a general feature of such reactions. In an effort to simultaneously address both of these essential mechanistic features, we have turned our attention to systems which—unlike the above nickel systems—involve isolable nitrocarbonylmetal complexes, $M(NO_2)(CO)L_n$ (see Scheme I). As shown in Figure 1, a double-label experiment involving two different isotopically labeled $M(NO_2)(CO)L_n$ derivatives would in principle provide a definitive method of distinguishing between intramolecular and intermolecular processes.

For our initial study we have carried out a detailed investigation of the reported⁴ thermolysis of $Ru(NO_2)_2(CO)_2(PPh_3)_2$ (eq 4).

$$\begin{array}{c} \operatorname{Ru}(\operatorname{NO}_2)_2(\operatorname{CO})_2(\operatorname{PPh}_3)_2 \xrightarrow{\operatorname{PPh}_3} \\ \operatorname{Ru}(\operatorname{NO})_2(\operatorname{PPh}_3)_2 + \operatorname{CO}_2 + \operatorname{CO} + \operatorname{Ph}_3\operatorname{PO} (4) \end{array}$$

The choice of this system was dictated primarily by the rather limited number¹⁸ of isolable complexes which contain both NO₂⁻ and CO ligands. We report here a determination of the stoichiometry of this novel reaction and the results of a series of ¹⁸Oand ¹³C-labeling experiments designed to examine the associated oxygen-atom transfer process.

Experimental Section

General Procedures. Unless otherwise specified all operations, including the purification of solvents, were carried out under an atmosphere of dry nitrogen. Schlenk-type apparatus was used for all benchtop re-

⁽¹⁾ Booth, G.; Chatt, J. J. Chem. Soc. 1962, 2099.

⁽²⁾ Hieber, W.; Beutner, H. Z. Anorg. Allg. Chem. 1963, 320, 101.

⁽¹⁸⁾ In view of the ease with which oxygen-atom transfer generally occurs in such systems, it is not surprising that NO_2 and CO are mutually incompatible ligands in all but a few cases. We note in this regard that the corresponding osmium analogue, $Os(NO_2)_2(CO)_2(PPh_3)_2$, has also been briefly mentioned.⁴

Figure 1. Isotopically labeled CO₂ species resulting from double-label experiment.

Scheme I

$$L_{n}M - \overset{18}{N} + CO \longrightarrow \begin{bmatrix} 0\\ 1\\ C & 18\\ 1\\ 0\\ 18O \end{bmatrix} \longrightarrow \begin{bmatrix} 0\\ C - \overset{18}{D}\\ L_{n}M - \overset{18}{N}\\ 18O \end{bmatrix} \longrightarrow L_{n}M - \overset{18}{N} - \overset{18}{N} + CO^{18}C$$

actions. Vacuum manipulations were carried out in a conventional glass vacuum line. Samples of C¹⁸O were transferred by means of a Toepler pump. Microanalyses were performed by Galbraith Laboratories, Knoxville, TN.

Materials. All solvents (reagent grade) were dried by appropriate methods and distilled immediately prior to use. The following compounds were purchased from the indicated commercial source and were used without further purification: RuCl₃·xH₂O (Englehard); AgPF₆ (Ozark-Mahoning); Ph₃PO (Aldrich); AgCN, KNO₂, KNO₃ (MCB). Triphenylphosphine (Pressure Chemical Co.) was purified by recrystallization from ether/n-heptane. Water enriched in 18 O at the nominal level of 1.5% was purchased from YEDA (Rehovoth, Israel). Carbon monoxide enriched in either ¹³C (94%) or ¹⁸O (99%) was purchased from

Monsato Research Corp. and Prochem, respectively. The complexes RuCl₂(CO)₂(PPh₃)₂,¹⁹ RuCl₂(PPh₃)₃,¹⁹ and Ru-(OH)(CO)(NO)(PPh₃)₂²⁶ were synthesized by literature methods. The method of Samuel and Wasserman²¹ was used to prepare $KN^{18}O_2$ by exchange with H₂¹⁸O.

Spectra. Infrared spectra were obtained on a Perkin-Elmer 180 spectrophotometer or a Perkin-Elmer 237 spectrophotometer equipped with a Moseley Model 7101A external recorder. The instruments were calibrated with carbon monoxide and polystyrene. Solution spectra were run in NaCl cells using CH2Cl2 as solvent. Mull spectra were recorded in Nujol and hexachlorobutadiene between NaCl plates.

Proton, ³¹P {¹H}, and ¹³C NMR spectra were obtained at 90.00, 36.43, and 22.62 MHz, respectively, on a Bruker WH-90DS spectrometer operating in the FT mode. For the ³¹P {¹H} measurements a CH₂Cl₂ solution of the sample was placed in a nitrogen-filled 8-mm NMR tube held coaxially in a 10-mm NMR tube. The outer tube contained D_2O which served as an external lock. ³¹P chemical shifts are referenced to an external sample of 85% H₃PO₄; positive chemical shifts are downfield from H₃PO₄

The ¹³C NMR spectra were obtained in 10-mm NMR tubes using CDCl₃ as solvent. The spectra were referenced internally to the solvent and ¹³C chemical shifts were converted to the TMS scale by taking the chemical shift of CDCl₃ as +77.0 ppm. Positive ¹³C chemical shifts are downfield from TMS.

Preliminary mass spectrometry measurements were carried out on a Hitachi Perkin-Elmer RMU-6 mass spectrometer. Mass spectrometric analysis of ¹⁸O- and ¹³C-enriched CO_2 samples were carried out on a Nuclide Analysis Associates RMS-11 isotope ratio mass spectrometer using the double collector procedure.^{22,23}

Preparation of Complexes. a. $RuCl_2({}^{13}CO)_2(PPh_3)_2$ was prepared by a modification of the literature method.¹⁹ Solid RuCl₂(PPh₃)₃ (4.07 g, 4.24 mmol) was placed in a 50-mL, round-bottomed flask which was equipped with a ball joint and a Teflon valve for vacuum line manipulation. The flask was evacuated and ^{13}CO (~400 Torr) was admitted. Dichloromethane (~15 mL) was added via syringe through a serum cap port on the side of the flask and the flask was brought to ambient pressure by addition of more ¹³CO. The solution was vigorously stirred for 6-7 h, during which time ¹³CO was periodically added to maintain ambient pressure. The dark brown solution gradually became lighter as CO

(19) Stephenson, T. A.; Wilkinson, G. J. Inorg. Nucl. Chem. 1966, 28, 945.
(20) Laing, K. R.; Roper, W. R. J. Chem. Soc. A 1970, 2149.
(21) Samuel, D.; Wasserman, I. J. Labelled Compd. 1971, 7, 355.
(22) Shakhashiri, B. Z.; Gordon, G. J. Inorg. Nucl. Chem. 1968, 30, 2539.
(23) Nier, A. O.; Ney, E. P.; Inghram, M. G. Rev. Sci. Instrum. 1947, 18, 294

uptake continued. The resulting pale yellow solution and white precipitate were transferred to a larger flask and dissolved in additional CH₂Cl₂. This solution was heated for 20 min to convert any remaining all-trans-RuCl₂(¹³CO)₂(PPh₃)₂ to the more stable cis isomer.^{19,24} Addition of ethanol gave the desired product as a white microcrystalline solid which was recrystallized from CH₂Cl₂/ethanol (yield 3.11 g, 97%): IR $(CH_2Cl_2) \nu(CO) 2015 (s), 1954 (s) cm^{-1}$.

 $RuCl_2(^{13}CO)_2(PPh_3)_2$ of lower (~20-25%) ¹³C enrichment was prepared in the same manner by diluting the ¹³CO with an appropriate amount of unlabeled CO.

b. RuCl₂(C¹⁸O)₂(PPb₃)₂ was prepared similarly from RuCl₂(PPh₃)₃ and C¹⁸O: IR (CH₂Cl₂) 2013 (s), 1950 (s) cm⁻¹

c. $Ru(NO_2)_2(CO)_2(PPh_3)_2$. A solution of $RuCl_2(CO)_2(PPh_3)_2$ (10.2) g, 13.6 mmol) and AgPF₆ (6.98 g, 27.6 mmol) in 250 mL of CH₃CN was heated under reflux for 4 h. The resulting suspension was filtered and solvent was removed in vacuo from the filtrate to afford solid [Ru- $(CH_3CN)_2(CO)_2(PPh_3)_2](PF_6)_2$.²⁵ In practice this material was not purified further. Methanol (250 mL) and KNO₂ (3.54 g, 41.6 mmol) were added and the suspension was heated at 50-60 °C for 4 h to give a gray precipitate. Solvent was evaporated in vacuo and the solid residue was extracted with CH₂Cl₂. Addition of methanol to the filtered extracts, followed by concentration in vacuo, gave an off-white solid. Recrystallization from CH₂Cl₂/methanol afforded pure Ru(NO₂)₂(CO)₂(PPh₃)₂ as a white microcrystalline solid (8.44 g, 80%). Anal. Calcd for $C_{38}H_{30}O_6N_2P_2Ru$: C, 58.99; H, 3.92; N, 3.62. Found: C, 58.97; H, 4.02; N, 3.52. IR (CH₂Cl₂) ν (CO) 2050 (s), 1992 (s) cm⁻¹; IR (mull) ν (CO) 2054 (w), 2042 (s), 1996 (w), 1983 (s) cm⁻¹; ν (NO₂) 1406, 1060, 1390, 1310, 820 cm⁻¹; ³¹P {¹H} NMR (CH₂Cl₂) 27.3 (singlet), 23.4 (singlet) ppm with relative intensities $\sim 5:1$, respectively.

d. Ru(NO₂)₂(¹³CO)₂(PPh₃)₂ was prepared similarly from RuCl₂-(¹³CO)₂(PPh₃)₂: IR (CH₂Cl₂) ν (CO) 2003 (s), 1949 (s) cm⁻¹; ³¹P [¹H] NMR (CDCl₃) 26.0 (triplet, J_{PC} = 10.9 Hz), 21.6 (triplet, J_{PC} = 10.6 Hz) ppm with relative intensities ~51, respectively; ¹³C NMR (CDCl₃) 198.6 (triplet, $J_{PC} = 10.9$ Hz), 195.6 (triplet, $J_{PC} = 10.6$ Hz), 195.3 (triplet, $J_{PC} = 10.6$ Hz) ppm with relative intensities ~32:1:1, respectively.

e. $Ru(NO_2)_2(C^{18}O)_2(PPh_3)_2$ was prepared similarly from RuCl₂-(C¹⁸O)_2(PPh_3)_2: IR (CH₂Cl₂) ν (CO) 2004 (s), 1948 (s) cm⁻¹.

f. $Ru(N^{18}O_2)_2(CO)_2(PPh_3)_2$ was prepared similarly from $RuCl_2$ -(CO)₂(PPh₃)₂ and KN¹⁸O₂.

g. $Ru(NO_3)_2(CO)_2(PPh_3)_2$. Treatment of $RuCl_2(CO)_2(PPh_3)_2$ (2.03) g, 2.70 mmol) with AgPF₆ (1.38 g, 5.45 mmol) and KNO₃ (0.630 g, 6.23 mmol) by a similar method afforded the product as a white microcrystalline solid (1.88 g, 87%): IR (CH₂Cl₂) ν (CO) 2067 (s), 2010 (s) cm⁻¹ [lit.²⁶ (Nujol) 2068 (s), 2012 (s) cm⁻¹]; ³¹P {¹H} NMR (CH₂Cl₂) 26.5 (singlet) ppm [lit.²⁶ (CDCl₃) 27.2 (singlet) ppm].

h. $Ru(ONO)(CO)(NO)(PPh_3)_2 \cdot 0.5CH_2Cl_2$. A solution of KNO_2 (1.39 g, 16.4 mmol) in 10 mL of aqueous ethanol was added to a solution of Ru(OH)(CO)(NO)(PPh₃)₂ (3.39 g, 4.85 mmol) in 40 mL of CH₂Cl₂. The resulting yellow-brown mixture was stirred at room temperature for 30 min and solvent was removed in vacuo. The solid residue was extracted with CH₂Cl₂ and ethanol was added to the filtered solution. Concentration in a nitrogen stream afforded yellow-brown crystals which

⁽²⁴⁾ Barnard, C. F. J.; Daniels, J. A.; Jeffery, J.; Mawby, R. J. J. Chem. Soc., Dalton Trans. 1976, 953.

⁽²⁵⁾ Full details of the characterization and reactions of this complex will be published separately

⁽²⁶⁾ Critchlow, P. B.; Robinson, S. D. Inorg. Chem. 1978, 17, 1896.

Figure 2. Selected time-dependent ³¹P[¹H] NMR spectra of the thermolysis of $Ru(NO_2)_2(CO)_2(PPh_3)_2$ in the presence of PPh₃ (111 °C, toluene solution). Arrows denote the partially obscured resonances due to Ph₃PO (spectrum B) and $Ru(NO)_2(PPh_3)_2$ (spectrum C); see text.

turned olive green after washing with hexane (yield 2.86 g, 76%). Anal. Caled for $C_{37,5}H_{31}O_4N_2P_2CIRu$: C, 58.33; H, 4.05; N, 3.63; P, 8.02; Cl, 4.59. Found: C, 57.99; H, 4.21; N, 3.42; P 8.08; Cl, 4.72. IR (CH₂Cl₂) ν (CO) 1935 (s) cm⁻¹; ν (NO) 1572 cm⁻¹; IR (mull) ν (NO₂) 1311, 1072 cm⁻¹; ¹H NMR (CDCl₃) τ 7.39 (C₆H₅, complex multiplet), 5.29 (CH₂Cl₂, single) with relative intensities 30:1, respectively; ³¹P [¹H] NMR (CH₂Cl₂) 35.6 (singlet) ppm.

(CH₂Cl₂) 35.6 (singlet) ppm. i. Ru(¹⁸ON¹⁸O)(CO)(NO)(PPh₃)₂0.5CH₂Cl₂ was prepared similarly from Ru(OH)(CO)(NO)(PPh₃)₂ and KN¹⁸O₂.

Thermolysis of $Ru(NO_2)_2(CO)_2(PPh_3)_2$ in the Presence of PPh₃. General Considerations. In a typical experiment, a solution of Ru- $(NO_2)_2(CO)_2(PPh_3)_2$ (0.958 g, 1.24 mmol) and PPh₃ (0.436 g, 1.66 mmol), in 100 mL of toluene was heated under reflux for 4 h. Solvent was removed in vacuo from the intense red-orange solution. Crystallization of the residue from CH₂Cl₂/ethanol afforded Ru(NO)₂(PPh₃)₂ as a brick red crystalline solid (0.802 g, 95%): IR (CH₂Cl₂) ν (NO) 1667 (s), 1619 (s) cm⁻¹ [lit.⁴ (Nujol) ν (NO) 1665 (s), 1619 (vs) cm⁻¹].

(s), 1619 (s) cm⁻¹ [lit.⁴ (Nujol) ν (NO) 1665 (s), 1619 (vs) cm⁻¹]. ³¹P NMR Studies. a. Thermolysis of Ru(NO₂)₂(CO)₂(PPh₃)₂ in the Presence of PPh₂. Time Study. A solution of Ru(NO₂)₂(CO)₂(PPh₃)₂ (1.54 g, 2.00 mmol) and PPh₃ (0.816 g, 3.12 mmol) in 150 mL of toluene was heated under reflux. Aliquots (10 mL) were withdrawn at suitable time intervals, evaporated in vacuo, and redissolved in 2 mL of CH₂Cl₂ for ³¹P NMR analysis. A series of representative ³¹P ¹Hl NMR spectra is shown in Figure 2. The reaction was observed to be complete after

~4 h, at which time the 31 P NMR spectrum showed three major resonances attributable to Ru(NO)₂(PPh₃)₂, Ph₃PO, and unreacted PPh₃.

A similar experiment was carried out at 85 ± 2 °C in order to more closely examine the early stages of the reaction. The ³¹P [¹H] NMR spectra showed the same features observed in the previous study.

b. Thermolysis of Ru(NO₂)₂(CO)₂(PPh₃)₂ in the Presence of PPh₃. **Product Analysis.** In a typical experiment, a solution of Ru(NO₂)₂- $(CO)_2(PPh_3)_2$ (~100 mg) and a weighed amount of PPh₃ (1-4 equiv) in 20 mL of toluene was heated under reflux for 11 h to ensure complete reaction. Solvent was removed in vacuo from the homogeneous red-orange solution. The solid residue was dissolved in CH_2Cl_2 and the resulting solution was transferred to a 8-mm NMR tube for ³¹P [¹H] NMR measurements. The relative amounts of Ru(NO)₂(PPh₃)₂ and Ph₃PO were determined by integration of the appropriate peaks. A constant set of instrumental parameters was maintained for all integration measurements. Identical analysis of a series of standard Ru(NO)₂(PPh₃)₂/Ph₃PO solutions established the validity of this method for the concentration range studied. The mean value of the Ru(NO)₂(PPh₃)₂/Ph₃PO molar ratio was 1.07 ± 0.13 for seven different reactions.

Reactions carried out in the presence of less than 1 mol of free PPh₃/mol of Ru(NO₂)₂(CO)₂(PPh₃)₂ led to substantial decomposition during the 11-h reflux period. Although Ru(NO)₂(PPh₃)₂ and Ph₃PO were still the only products detected by ³¹P NMR spectroscopy, their relative amounts were quite altered from above.

c. Thermolysis of $Ru(ONO)(CO)(NO)(PPh_3)_2$ in the Presence of **PPh₃**. Product Analysis. The reaction of Ru(ONO)(CO)(NO)-(PPh₃)₂·0.5CH₂Cl₂ and PPh₃ (1-4 equiv) was examined in a similar manner. The mean value of the Ru(NO)₂(PPh₃)₂/Ph₃PO molar ratio was 1.06 ± 0.08 .

Mass Spectrometry Data Treatment. a. Single-Label Studies. The following symbols are used in this paper.

 ${}^{46}E_{\rm X}$ is a measure of the ${}^{18}{\rm O}$ enrichment in the species X relative to a normal sample of species X. ${}^{46}E_X$ is determined experimentally from the (mass 46)/(mass 44 + mass 45 + mass 47) ratio ($^{46}R_X$) for an ¹⁸O-enriched CO₂ sample derived from species X compared to that $({}^{46}R_{\text{standard}})$ for a standard CO₂ sample of natural isotopic abundance. Thus.

$${}^{46}E_{\rm X} = {}^{46}R_{\rm X}/{}^{46}R_{\rm standard}$$

For a substance X of natural isotopic abundance, ${}^{46}E_X = 1.000$. *n*_t represents the number of oxygen atoms per CO₂ molecule which derive from the nitrite ligands in $Ru(N^{18}O_2)_2(CO)_2(PPh_3)_2$. Values of $n_{\rm t}$ can be calculated from the relationship

$$n_{\rm t} = \left[\frac{{}^{46}E_{\rm CO_2} - {}^{46}E_{\rm CO}}{{}^{46}E_{\rm NO_2} - {}^{46}E_{\rm CO}} \right] (2.00)$$

where ${}^{46}E_{CO_2}$ is the ${}^{18}O$ enrichment of the CO₂ produced from Ru-(N¹⁸O₂)₂(CO)₂(PPh₃)₂ and ${}^{46}E_{CO}$ and ${}^{46}E_{NO_2}$ are the ${}^{18}O$ enrichments of the carbonyl and nitrite groups, respectively, in Ru(N¹⁸O₂)₂(CO)₂- $(PPh_3)_2$

b. Double-Label Studies. The quantities ${}^{46}E_X$ and ${}^{46}R_X$ are defined as before. By analogy with the single-label case, ${}^{47}R_X$ is defined as the experimentally measured (mass 47)/(mass 44 + mass 45 + mass 46) ratio for an ${}^{18}O/{}^{13}C$ -enriched CO₂ sample derived from species X. ${}^{47}R_{\text{standard}}$ is the corresponding ratio for a standard CO₂ sample of natural isotopic abundance. ${}^{47}E_{\text{X}}$ is defined by

$${}^{47}E_{\rm X} = {}^{47}R_{\rm X}/{}^{47}R_{\rm standard}$$

and is thus related to the ¹⁸O/¹³C enrichment in the species X relative to a normal sample of species X.

For all label studies, the amount of ¹⁷O present was assumed to be negligible and isotope effects were considered to be unimportant. Determination of ¹⁸O and ¹³C Enrichment. The ¹⁸O enrichment of

KN¹⁸O₂ and Ru(N¹⁸O₂)₂(CO)₂(PPh₃)₂ was determined by mass spectrometry after conversion of the oxygen in the samples to CO₂ with AgCN according to the method of Shakhashiri and Gordon.²⁷ The ¹⁸O enrichment of the CO₂ produced is taken as identical with that of the parent compound. The mean value of ${}^{46}E_{\text{complex}}$ for Ru(N¹⁸O₂)₂(CO)₂- $(PPh_3)_2$ was 4.913 ± 0.012 for three determinations. The mean value of ${}^{46}E_{\rm KNO_2}$ for the KN¹⁸O₂ used to prepare the complex was 6.694 ± 0.064 for three determinations. The precision of both sets of measurements lies within the expected uncertainty associated with the AgCN method.²⁷ The experimental value of ⁴⁶E_{complex} for Ru(N¹⁸O₂)₂(CO)₂-(PPh₃)₂ is in acceptable agreement with the value (4.796 ± 0.065) calculated from the measured value of ⁴⁶E_{KNO2}. In view of this agreement, ⁴⁶E_{complex} for Ru(¹⁸ON¹⁸O)(CO)(NO)(PPh₃)₂ was calculated from ${}^{46}E_{\rm KNO}$, rather than measured directly.

Single-label studies indicated that the oxygen atoms in $Ru(NO_2)_2$ - $(CO)_2(PPh_3)_2$ are statistically scrambled during the production of CO_2 (see Results and Discussion). Thus, values of ${}^{46}E$ and ${}^{47}E$ for Ru- $(NO_2)_2({}^{13}CO)_2(PPh_3)_2$ and ${}^{47}E$ for Ru($N{}^{18}O_2)_2(CO)_2(PPh_3)_2$ were obtained by mass spectrometry of the CO₂ produced in the thermolysis of the individual complexes. That is, no AgCN degradation was necessary. The ¹⁸O and ¹³C enrichments of both complexes were calculated from the values of ${}^{46}E$ and ${}^{47}E$ by solving the simultaneous equations which result from the definitions of ${}^{46}E$ and ${}^{47}E$ and consideration of the isotopically labeled species present (see Supplementary Material)

Vacuum Line and Labeling Studies. a. Thermolysis of Ru(NO₂)₂- $(CO)_2(PPh_3)_2$ in the Presence of PPh₃. In a typical experiment, Ru-(NO₂)₂(CO)₂(PPh₃)₂ (300 mg, 0.388 mmol) and PPh₃ (150 mg, 0.572 mmol) were placed in a 100-mL, round-bottomed flask. The flask was sealed by means of an O-ring joint to a Dewar condenser which was attached to a vacuum line. The entire apparatus was evacuated to $<10^{-5}$ Torr for at least 12 h, and toluene (\sim 35 mL), previously degassed by several freeze-pump-thaw cycles, was introduced by vacuum distillation. The apparatus was isolated from the vacuum line and nitrogen (~ 600 Torr) was admitted. Dry ice was added to the Dewar condenser and the toluene solution was heated under reflux for ~ 4 h. Volatile material was condensed in a trap cooled at -196 °C, purified by a series of trap to trap distillations, and transferred to an evacuated storage tube for mass spectrometric analysis.

Preliminary studies were carried out with unenriched Ru(NO2)2-(CO)₂(PPh₃)₂. Mass spectrometric analysis established CO₂ as the only condensable volatile product of the reaction. Pressure-volume measurements indicated that $\sim 1 \mod \text{of CO}_2$ was produced per mole of $Ru(NO_2)_2(CO)_2(PPh_3)_2$ reacted. Qualitative measurement of the pressure changes in the reaction system indicated that a noncondensable gas (presumably CO) was also produced.

Studies involving ¹⁸O-labeled complex were carried out similarly except that mass spectrometric measurements were performed only on the RMS-11 instrument. For double-label experiments, samples of Ru-(N¹⁸O₂)₂(CO)₂(PPh₃)₂, Ru(NO₂)₂(¹³CO)₂(PPh₃)₂, and PPh₃ were weighed directly into the reaction flask. Alternatively, a homogeneous mixture of the ¹⁸O- and ¹³C-labeled complexes was prepared by recrystallization. A portion of this mixture and the PPh3 sample were weighed directly into the reaction flask. In either case, the remainder of the procedure was identical with that described above.

b. Thermolysis of Ru(ONO)(CO)(NO)(PPh₃)₂ in the Presence of PPh₃. In a similar experiment, a solution of Ru(ONO)(CO)(NO)-(PPh₃)₂·0.5CH₂Cl₂ (276 mg, 0.358 mmol) and PPh₃ (249 mg, 0.950 mmol) in \sim 35 mL of toluene was heated under reflux for \sim 4 h. The solution was thoroughly degassed by several freeze-pump-thaw cycles and condensable material was retained in a trap cooled at -196 °C. This material was shown to be CO₂ by mass spectrometry of the purified sample. The amount of CO₂ produced, as measured by standard pressure-volume techniques, was 0.034 mmol.

c. Reversibility Studies. Two studies of this type were carried out. In the first experiment, a solution of $Ru(N^{18}O_2)(CO)(NO)(PPh_3)_2$. 0.5CH₂Cl₂ (209 mg, 0.271 mmol) and PPh₃ (108 mg, 0.412 mmol) in \sim 35 mL of toluene was prepared as in part a. The solution was frozen at -196 °C and unenriched CO₂ (0.258 mmol) was condensed into the reaction vessel. Subsequent operations followed the procedure outlined in part a except that CO₂ was not trapped during the 4-h reflux period. The solution was cooled and CO2 was trapped, purified, and transferred to a storage tube for mass spectrometric analysis (${}^{46}E_{CO_2} = 1.266$).

In the second experiment, the unenriched CO_2 was generated in situ by thermolysis of $Ru(NO_2)_2(CO)_2(PPh_3)_2$. Samples of $Ru(N^{18}O_2)_2(CO)(NO)(PPh_3)_2 \cdot 0.5CH_2Cl_2$ (212 mg, 0.275 mmol), PPh₃ (212 mg, 0.809 mmol), and Ru(NO₂)₂(CO)₂(PPh₃)₂ (202 mg, 0.261 mmol) were placed in the reaction vessel described above. All subsequent operations were carried out according to the procedure in part a. Mass spectrometric analysis of the recovered purified CO₂ sample showed ${}^{46}E_{CO}$, = 1.345.

d. Investigation of the Role of Free NO_2^- . Samples of $Ru(NO_2)_{2^-}$ (CO)₂(PPh₃)₂ (322 mg, 0.416 mmol), PPh₃ (164 mg, 0.626 mmol), and KN¹⁸O₂ (62 mg, 0.73 mmol) were placed in the reaction vessel described above. The remainder of the experimental procedure was identical with that in part a. Mass spectrometric analysis of the purified CO₂ sample showed no incorporation of ¹⁸O (${}^{46}E_{CO_2} = 0.994$).

Results and Discussion

Preparation and Structure of Ru(NO_2)_2(CO)_2(PPh_3)_2. It is not clear in the very brief original report⁴ of $Ru(NO_2)_2(CO)_2(PPh_3)_2$ whether the complex was actually isolated and characterized. While exploring alternative synthetic routes to this complex, we found that $Ru(NO_2)_2(CO)_2(PPh_3)_2$ could be readily prepared in

⁽²⁷⁾ Shakhashiri, B. Z.; Gordon, G. Talanta 1966, 13, 142.

80% yield by a two-step process. Reaction of $RuCl_2(CO)_2(PPh_3)_2$ with AgPF₆ in acetonitrile afforded [Ru(CH₃CN)₂(CO)₂- $(PPh_3)_2](PF_6)_2$, which in turn was converted to the desired product upon reaction with KNO_2 in methanol.

The Nujol mull infrared spectrum of Ru(NO₂)₂(CO)₂(PPh₃)₂ in the $\nu(CO)$ region showed two strong bands at 2042 and 1983 cm⁻¹ and two weak bands at 2054 and 1996 cm⁻¹. The latter are not resolvable in solution and the infrared spectrum in CH₂Cl₂ exhibited only two strong bands at 2050 and 1992 cm⁻¹. The ³¹P ¹H NMR spectrum of the complex consists of two singlets at 27.3 and 23.4 ppm (CH₂Cl₂) having relative intensities \sim 5:1, respectively. Since the infrared and ³¹P NMR spectra were unaltered by repeated crystallization of the sample, it is apparent that two isomers of $Ru(NO_2)_2(CO)_2(PPh_3)_2$ are present. Clearly, a large number of isomers are possible in principle when both geometrical isomerism and linkage isomerism involving the nitrite ligand are taken into account. In order to identify the major and minor isomers a sample of ¹³C-enriched $Ru(NO_2)_2(^{13}CO)_2(PPh_3)_2$ was prepared from 94% ¹³CO. The ³¹P {¹H} resonances at 26.0 and 21.6 ppm (CDCl₃) were observed as triplets with ${}^{31}P{-}^{13}C$ coupling constants of 10.9 and 10.6 Hz, respectively. Satellites due to the species ($\sim 10\%$ abundance) containing a single ¹³CO group, i.e., $Ru(NO_2)_2({}^{12}CO)({}^{13}CO)(PPh_3)_2$, were also observed. The ¹³C NMR spectrum of the enriched complex exhibited an intense triplet ($J_{PC} = 10.9 \text{ Hz}$) at 198.6 ppm and an overlapping pair of weak triplets at 195.6 ($J_{PC} = 10.6 \text{ Hz}$) and 195.3 ($J_{PC} =$ 10.6 Hz) ppm having equal intensity.

The ³¹P and ¹³C NMR results indicate that the major isomer contains magnetically equivalent pairs of PPh₃ and CO groups. In addition, the observation of two strong $\nu(CO)$ bands in the infrared spectrum of this isomer reveals that the two CO groups adopt a mutual cis arrangement. Only two structures (1 and 2)

are compatible with these spectroscopic data. A tentative distinction between these structural alternatives can be made from ³¹P NMR spectroscopy. The ³¹P chemical shift (27.3 ppm) of the major isomer of $Ru(NO_2)_2(CO)_2(PPh_3)_2$ is quite similar to that (26.5 ppm) observed under identical conditions for the isostructural nitrate complex Ru(NO₃)₂(CO)₂(PPh₃)₂, in which the anionic ligands are required to be O-bonded.²⁸ On this basis we favor structure 2 for the major isomer.

Similarly, the ³¹P and ³¹C NMR and ν (CO) infrared data indicate that the minor isomer of $Ru(NO_2)_2(CO)_2(PPh_3)_2$ contains a pair of magnetically equivalent PPh₃ ligands and two nonequivalent, mutually cis CO groups. Structure 3, which contains both N-bonded and O-bonded nitrite ligands, is the only isomer consistent with the spectral data. The presence of linkage isomerism in the isomeric mixture of $Ru(NO_2)_2(CO)_2(PPh_3)_2$ is also suggested by infrared bands characteristic²⁹ of both O-bonded $(1406, 1060 \text{ cm}^{-1})$ and N-bonded $(1390, 1310 \text{ cm}^{-1})$ nitrite ligands. The weaker intensity of the latter pair of bands is consistent with our formulation of the isomeric mixture.

Thermolysis of Ru(NO₂)₂(CO)₂(PPh₃)₂. Products and Stoichiometry.³⁰ As reported by Roper and co-workers⁴ the thermolysis of $Ru(NO_2)_2(CO)_2(PPh_3)_2$ in the presence of PPh₃ affords excellent yields of Ru(NO)₂(PPh₃)₂ (eq 4). Our studies of this reaction were carried out in refluxing (111 °C) toluene, a more innocent solvent than the previously⁴ used dimethylformamide. Under these conditions the reaction proceeded quite readily to completion in ~ 4 h, and virtually quantitative yields of Ru- $(NO)_2(PPh_3)_2$ were obtained. Reaction progress can be followed by the series of color changes which accompanies the reaction. Thus, the originally colorless solution sequentially turned yellow-green, dark-green, and orange during the first 45 min of heating. Eventually, the solution became the characteristic intense red-orange color of Ru(NO)₂(PPh₃)₂. The ³¹P {¹H} NMR spectrum of the final reaction mixture exhibited three singlets at 54.0, 27.1, and -5.50 ppm which are assigned, respectively to Ru(NO)₂(PPh₃)₂, Ph₃PO, and unreacted PPh₃ by comparison with authentic samples. The infrared spectrum of this solution in the $\nu(CO)$ and $\nu(NO)$ regions showed only two strong $\nu(NO)$ bands at 1667 and 1619 cm⁻¹, in excellent agreement with the literature^{4,31} values for $Ru(NO)_2(PPh_3)_2$.

Mass spectrometric analysis of the purified volatile material produced and trapped during the reaction showed CO_2 as the only detectable product. Conventional pressure-volume measurements established that $\sim 1 \mod \text{of CO}_2$ was produced per mole of Ru- $(NO_2)_2(CO)_2(PPh_3)_2$ reacted. Evidence for the production of a noncondensable gas (presumably CO) was also noted qualitatively, but the amount of this product was not measured.

Infrared analysis of the solution during the early stages of the reaction indicated the presence of an intermediate species having a single $\nu(CO)$ band at 1935 cm⁻¹ and a single $\nu(NO)$ band at 1572 cm⁻¹. A logical formulation of this intermediate would be the five-coordinate complex Ru(ONO)(CO)(NO)(PPh₃)₂-or its linkage isomer $Ru(NO_2)(CO)(NO)(PPh_3)_2$ —since it would derive from $Ru(NO_2)_2(CO)_2(PPh_3)_2$ by oxygen-atom transfer and subsequent loss of CO₂. This assumption was indeed confirmed by independent synthesis and characterization of the intermediate.³ Reaction of the labile hydroxo complex²⁰ Ru(OH)(CO)(NO)- $(PPh_3)_2$, with KNO₂ in a mixture of dichloromethane and aqueous ethanol afforded the proposed intermediate as an olive-green crystalline dichloromethane solvate, Ru(ONO)(CO)(NO)- $(PPh_3)_2 \cdot 0.5CH_2Cl_2$. Yields (76%) are comparable with those obtained previously²⁰ in the preparation of related RuX(CO)- $(NO)(PPh_3)_2$ derivatives from $Ru(OH)(CO)(NO)(PPh_3)_2$.

Both elemental analysis and ¹H NMR spectroscopy confirmed the indicated solvate formulation. The infrared spectrum of $Ru(ONO)(CO)(NO)(PPh_3)_2$ showed $\nu(CO)$ (1935 cm⁻¹) and $\nu(NO)$ (1572 cm⁻¹) bands identical with those observed for the reaction intermediate in the thermolysis of $Ru(NO_2)_2(CO)_2$ - $(PPh_3)_2$. An infrared band at 1072 cm⁻¹ is consistent²⁹ with the presence of O-bonded nitrite in the complex. The $^{31}P\left\{ ^{1}H\right\} NMR$ spectrum exhibited a singlet at 35.6 ppm.

The thermolysis of Ru(NO₂)₂(CO)₂(PPh₃)₂ was also monitored as a function of time by ³¹P NMR spectroscopy. A series of representative ${}^{31}P$ { ^{1}H } NMR spectra is reproduced in Figure 2. Spectrum A is that of the initial solution of $Ru(NO_2)_2(CO)_2$ -(PPh₃)₂ (isomer 2, 27.4 ppm; isomer 3, 23.4 ppm) and PPh₃ (-5.50 ppm) prior to heating. After 10 min of heating (spectrum B), a pair of resonances attributable to Ru(ONO)(CO)(NO)(PPh₃)₂ and a second intermediate are seen at 35.6 and 34.5 ppm, respectively. A weak resonance due to Ph₃PO (27.1 ppm) appears as a high-field shoulder on the resonance of isomer 2. Interestingly, no resonance attributable to $Ru(NO)_2(PPh_3)_2$ is detected at this point. Spectrum C indicates that Ru(ONO)(CO)(NO)(PPh₃)₂ is the predominant complex in solution after 20 min of heating.

⁽²⁸⁾ In CDCl₃ solution the ${}^{31}P$ chemical shifts of the major isomer of Ru(NO₂)₂(CO)₂(PPh₃)₂ and Ru(NO₃)₂(CO)₂(PPh₃)₂ are +26.0 and +27.2²⁶ ppm, respectively.

 ^{(29) (}a) Nakamoto, K. "Infrared and Raman Spectra of Inorganic and Coordination Compounds", 3rd ed.; Wiley: New York, 1978; pp 220–225.
 (b) Assignment of infrared bands involving nitrite ligands was aided by comparing spectra of $Ru(NO_2)_2(CO)_2(PPh_3)_2$ with spectra of the corresponding *chloride* $RuCl_2(CO)_2(PPh_3)_2$. The reported bands are the *only* bands which could be attributed with certainty to O-bonded or N-bonded nitrite ligands. All other bands in the infrared spectrum (1600-800 cm⁻¹) of $Ru(NO_2)_2$ - $(CO)_2(PPh_3)_2$ are also common to the infrared spectrum of RuCl₂(CO)₂-(PPh₃)₂

⁽³⁰⁾ Unless otherwise stated, the single formula Ru(NO₂)₂(CO)₂(PPh₃)₂ is used for simplicity to refer to the isomeric mixture of Ru(ONO)₂(CO)₂⁻ (PPh₃)₂ (2) and Ru(ONO)(NO₂)(CO)₂(PPh₃)₂ (3). (31) Levison, J. J.; Robinson, S. D. J. Chem. Soc. A **1970**, 2947. (32) We have also isolated Ru(ONO)(CO)(NO)(PPh₃)₂ directly from caluting the initial streng of the thermolution exortion. In view of the

solution during the initial stages of the thermolysis reaction. In view of the complexity of the thermolysis reaction (see text and Figure 2), this direct method does not represent the optimum synthesis of Ru(ONO)(CO)(NO)-(PPh₃)₂.

A very weak resonance due to $Ru(NO)_2(PPh_3)_2$ (54.0 ppm) is barely discernible. After 30 min (spectrum D) the areas of the $Ru(NO)_2(PPh_3)_2$ and Ph_3PO resonances are approximately equal, and the resonances due to $Ru(NO_2)_2(CO)_2(PPh_3)_2$ have practically disappeared.

Spectrum E shows that the conversion of $Ru(NO_2)_2(CO)_2$ -(PPh₃)₂ into intermediates is complete within 45 min. Moreover, the areas of the $Ru(NO)_2(PPh_3)_2$ and Ph₃PO resonances have attained a 2:1 ratio that remains constant throughout the rest of the reaction. Subsequent spectra (F-J) illustrate the gradual conversion of the two intermediates into $Ru(NO)_2(PPh_3)_2$ and Ph₃PO, a process that is complete after ~4 h total reaction time (spectrum J). Note that $Ru(ONO)(CO)(NO)(PPh_3)_2$ remains as the major complex in solution until the reaction time exceeds 90 min (spectra G and H). One extra very weak resonance is detected at 34.1 ppm in the final spectrum. The origin of this minor resonance, whose appearance is first noted after 45 min (spectrum E), is unknown at present.

A number of additional features regarding reaction 1 are apparent from this ³¹P NMR study. These features and their implications may be summarized as follows.

(1) The existence of *two* intermediates is clearly indicated by the growth and subsequent disappearance of resonances at 35.6 and 34.5 ppm. Although the more intense resonance (35.6 ppm) can be unambiguously assigned to Ru(ONO)(CO)(NO)(PPh₃)₂, assignment of the other resonance is more tenuous. It is possible that the second intermediate is the N-bonded linkage isomer of Ru(ONO)(CO)(NO)(PPh₃)₂. The ³¹P NMR data are not inconsistent with this contention since the ³¹P chemical shift of Ru(NO₂)(CO)(NO)(PPh₃)₂ might be expected to occur *upfield* of that in Ru(ONO)(CO)(NO)(PPh₃)₂ in view of the trend noted for **2** and **3**. Further support for this contention comes from the observation that the 34.5-ppm resonance was also detected during the thermolysis of Ru(ONO)(CO)(NO)(PPh₃)₂ and PPh₃ under identical conditions. Thus, the second intermediate—whatever its nature—is derivable from Ru(ONO)(CO)(NO)(PPh₃)₂.

(2) The resonances due to $Ru(NO)_2(PPh_3)_2$ (54.0 ppm) and Ph_3PO (27.1 ppm) grow in simultaneously, except initially when a small amount of Ph_3PO is detectable prior to the appearance of $Ru(NO)_2(PPh_3)_2$. The most obvious conclusion to be drawn from this observation is that there are two different processes which give rise to Ph_3PO . The major process thus appears to be linked to the formation of $Ru(NO)_2(PPh_3)_2$. In contrast, the second process leading to Ph_3PO is not directly related to the production of $Ru(NO)_2(PPh_3)_2$ and occurs to a much lesser extent. A logical conclusion is that this second process is related to the formation of the intermediates.

(3) The resonances attributable to intermediates (35.6, 34.5 ppm) grow in at a faster rate than does the resonance due to Ph_3PO (27.1 ppm). This further suggests that the intermediate complexes and most of the Ph_3PO are formed by independent processes.

(4) The conversion of $Ru(NO_2)_2(CO)_2(PPh_3)_2$ into intermediates is necessarily a faster process than the subsequent conversion of intermediates into the ultimate products $Ru(NO)_2(PPh_3)_2$ and Ph_3PO . Note that under the conditions used the former process requires only ~45 min of the total ~4-h reaction time.

(5) The 2/3 isomer ratio remains essentially unaltered, within experimental error, as $Ru(NO_2)_2(CO)_2(PPh_3)_2$ is converted into intermediates.³³ This observation suggests that the rate of any linkage isomerization process involving 2 and 3 must be comparable to (or greater than) the rate of conversion of $Ru(NO_2)_2$ -(CO)₂(PPh₃)₂ into intermediates.

(6) Such is clearly *not* the case for the two intermediates since the relative amounts of these species undergo considerable change as the reaction proceeds. The area ratio increases steadily from $\sim 3:1$ (spectrum B) to $\sim 11:1$ (spectrum E) during the first 45

min of the reaction. This ratio remains essentially constant at $\sim 11:1$ over the next 75 min (spectra F-H) but decreases to $\sim 7:1$ during the subsequent 1-h period (spectrum I) prior to complete conversion of intermediates into products. The implications of these observations are unclear, and extensive speculation is probably unwarranted in the absence of detailed kinetic studies,

An additional ³¹P NMR study was carried out to determine the stoichiometry of reaction 4 with respect to the phosphoruscontaining reactants and products. In a series of seven experiments the PPh₃/Ru(NO₂)₂(CO)₂(PPh₃)₂ molar ratio was systematically varied over the range from 1:1 to 4:1 and the thermolysis reactions were effected as before. The seven solutions were analyzed for the relative amounts of Ru(NO)₂(PPh₃)₂ and Ph₃PO by integration of the appropriate ³¹P resonances. Within experimental error, these products were observed to be formed in *equal* amounts (Ru(NO)₂(PPh₃)₂/Ph₃PO molar ratio = 1.07 ± 0.13), independent of the quantity of free PPh₃ used in the reaction.

Similar experiments carried out in the presence of less than 1 mol of PPh₃/mol of Ru(NO₂)₂(CO)₂(PPh₃)₂ also showed Ru-(NO)₂(PPh₃)₂ and Ph₃PO as the only products detectable by ³¹P NMR spectroscopy. However, these reactions were accompanied by substantial decomposition as evidenced by the formation of dark-brown insoluble residue and metallic ruthenium, in contrast to the red-orange homogeneous solutions observed in the presence of at least 1 equiv of PPh₃. Moreover, the relative amounts of Ru(NO)₂(PPh₃)₂ and Ph₃PO formed under these conditions were greatly dependent on the quantity of free PPh₃ used. For example, the Ru(NO)₂(PPh₃)₂/Ph₃PO molar ratio was 0.78 when 0.60 mol of PPh₃ was used per mole of Ru(NO₂)₂(CO)₂(PPh₃)₂ whereas this ratio decreased to 0.27 in the absence of free PPh₃.

It is clear from the above ³¹P NMR studies that at least 1 equiv of PPh₃ is necessary for the thermolysis of $Ru(NO_2)_2(CO)_2(PPh_3)_2$ to proceed cleanly. Furthermore, our combined results indicate that under these conditions the overall stoichiometry reaction 4 is correctly described by eq 5. The identification of Ru-

$$\begin{array}{c} \operatorname{Ru}(\operatorname{NO}_2)_2(\operatorname{CO})_2(\operatorname{PPh}_3)_2 + \operatorname{PPh}_3 \rightarrow \\ \operatorname{Ru}(\operatorname{NO})_2(\operatorname{PPh}_3)_2 + \operatorname{CO}_2 + \operatorname{CO} + \operatorname{Ph}_3\operatorname{PO} (5) \end{array}$$

 $(ONO)(CO)(NO)(PPh_3)_2$ as the predominant intermediate in this reaction necessarily requires that eq 5 take place in a stepwise fashion. Two of the more likely alternatives are shown in eq 6 and 7.³⁴

$$\frac{\text{Ru}(\text{NO}_2)_2(\text{CO})_2(\text{PPh}_3)_2 \rightarrow}{\text{Ru}(\text{ONO})(\text{CO})(\text{NO})(\text{PPh}_3)_2 + \text{CO}_2 (6a)}$$

$$\begin{array}{c} Ru(ONO)(CO)(NO)(PPh_3)_2 + PPh_3 \rightarrow \\ Ru(NO)_2(PPh_3)_2 + Ph_3PO + CO (6b) \end{array}$$

 $\begin{array}{c} \operatorname{Ru}(\operatorname{NO}_2)_2(\operatorname{CO})_2(\operatorname{PPh}_3)_2 + \operatorname{PPh}_3 \rightarrow \\ \operatorname{Ru}(\operatorname{ONO})(\operatorname{CO})(\operatorname{NO})(\operatorname{PPh}_3)_2 + \operatorname{Ph}_3\operatorname{PO} + \operatorname{CO} \ (7a) \end{array}$

$$Ru(ONO)(CO)(NO)(PPh_3)_2 \rightarrow Ru(NO)_2(PPh_3)_2 + CO_2$$
(7b)

In order to experimentally distinguish between these two (or other) alternatives, the thermolysis of Ru(ONO)(CO)(NO)-(PPh₃)₂ was studied under conditions identical with those used for eq 5. In the presence of 1-4 equiv of PPh₃ such reactions proceeded cleanly to yield equimolar amounts (Ru(NO)₂-(PPh₃)₂/Ph₃PO molar ratio = 1.06 ± 0.08) of Ru(NO)₂(PPh₃)₂ and Ph₃PO as determined by ³¹P NMR spectroscopy. Vacuum line measurements indicated that ~0.1 mol of CO₂ (identified by mass spectrometry) was produced per mole of Ru(ONO)-(CO)(NO)(PPh₃)₂ reacted. Qualitative evidence for the formation of a noncondensable gas (presumably CO) was also obtained.

Since Ph₃PO and CO_2 are *both* observed as products in the thermolysis of Ru(ONO)(CO)(NO)(PPh₃)₂, it is apparent that neither of the competitive processes given in reactions 6 and 7 by itself represents the *exclusive* pathway for eq 5. However, the

⁽³³⁾ A similar result was observed when the reaction was carried out at 85 ± 2 °C in order to more closely examine the early stages of the reaction. Under these conditions the 2/3 isomer ratio was unchanged, within experimental error, during the ~6.5-h period required for complete conversion of Ru(NO₂)₂(CO)₂(PPh₃)₂ into intermediates.

⁽³⁴⁾ For simplicity, only the major observed intermediate, $Ru(ONO)-(CO)(NO)(PPh_3)_2$, is indicated in eq 6 and 7.

Scheme II

amount of CO₂ produced is such that reaction 7 can account for only ~10% of the total reaction. This is consistent with the ^{31}P NMR study of reaction 5 (Figure 2) in which appreciable amounts of Ph₃PO were not detected prior to the formation of Ru- $(NO)_2(PPh_3)_2$. We therefore conclude that reaction 6 is by far the predominant pathway for eq 5. It is important to note that the thermolysis of $Ru(NO_2)_2(CO)_2(PPh_3)_2$ (eq 5) thus involves two highly selective oxygen-atom transfer processes which occur from NO_2^- ligands to, in turn, CO (eq 6a) and PPh₃ (eq 6b) ligands. Oxygen-atom transfer from coordinated NO₂⁻ to PPh₃ has been observed previously³⁵ in the reaction of $[Ru(NO_2)]$ -(C1)(bpy)₂]⁺ with PPh₃. In earlier work,³⁶ the formation of Ph₃PO from the reaction of $NiX_2(PPh_3)_2$ (X = Cl, Br, I) and PPh₃ with NaNO₂ was attributed to a side reaction. Such is clearly not the case in the system at hand.

Throughout this discussion little attention has been paid to the mechanistic involvement of the O-bonded and N-bonded isomers of the starting material and intermediate. Although the exact role of these complexes in the overall reaction mechanism is uncertain, the reasonable sequence shown in Scheme II can be proposed. Consistent with experimental observations on a variety of related systems,¹⁻¹³ the assumption is made in Scheme II that oxygen-atom transfer from N-bonded NO₂⁻ is preferred over transfer from O-bonded NO_2^- . Note also that it is conceptually easier to envision the former process leading to the conversion of coordinated NO_2^- to coordinated NO. Scheme II is particularly attractive because it provides a logical way to account for all the species observed—or presumed to exist—in solution from the ³¹P NMR and infrared studies, In view of the observed complexity of the reaction, kinetic studies designed to examine the proposed mechanism would likely be a nontrivial task.

¹⁸O Single-Label Studies. An ¹⁸O-labeling study of reaction 5 was carried out in order to determine the nature of the oxygen-atom transfer process leading to the formation of CO₂. The thermolysis reaction was effected under the usual conditions except that ¹⁸O-enriched $Ru(N^{18}O_2)_2(CO)_2(PPh_3)_2$ was used. Pertinent $^{18}\mathrm{O}$ enrichment data for the CO₂ product from eight separate experiments are listed in Table I.

The presence of a substantial amount (n > 1.00) of ¹⁸O in the CO_2 produced in reaction 5 unambiguously establishes NO_2^{-} as the source of transferred oxygen. It is important to note that the degree of enrichment $(n_t = 1.33)$ is significantly larger than that expected $(n_t = 1.00)$ for the simple oxygen-atom transfer process depicted in Scheme I. In fact, the observed value of n_t is exactly the value which would be predicted on the basis of statistical scrambling of all oxygen atoms in the molecule.³⁷ Such scrambling could in principle arise from several sources. Exchange between free CO₂ and either Ru(¹⁸ON¹⁸O)(CO)(N¹⁸O)(PPh₃)₂ or $Ru(N^{18}O)_2(PPh_3)_2$ is one possibility. It is also possible that

Table I. ¹⁸O Enrichment of CO, Derived from the Thermolysis of $Ru(N^{18}O_2)_2(CO)_2(PPh_3)_2^{a}$

trial	46ECO2	nt	
1	4.714	1.30	
2	4.733	1.31	
3	4.768	1.32	
4	4.776	1.33	
5	4.801	1.34	
6	4.814	1.34	
7	4.747	1.32	
8	4.840	1.35	
mean	4.774	1.33	
	± 0.043	±0.02	

^a See Experimental Section for explanation of terms; ${}^{46}E_{\rm NO_2} = 6.694 \pm 0.064.$

 CO_2 could exchange with free $N^{18}O_2^-$ that might be present in solution. Alternatively, oxygen scrambling could be an intrinsic part of the oxygen-atom transfer process itself, as was the case for the nickel system¹⁰ in eq 2. A series of control experiments was conducted in order to examine these possibilities.

Two experiments demonstrated that the observed ¹⁸O enrichment was not merely due to exchange between free CO2 and the reaction intermediates or products. For both studies, CO₂ of normal isotopic abundance was brought into contact with an approximately equimolar amount of Ru(18ON18O)(CO)(NO)-(PPh₃)₂ under reaction conditions. In one case, a measured sample of CO₂ was frozen into the reaction solution, and, in the second case, the CO₂ was generated in situ by the simultaneous thermolysis of unenriched $Ru(NO_2)_2(CO)_2(PPh_3)_2$. For both experiments only a small amount of ¹⁸O enrichment was detected in the recovered CO₂ (${}^{46}E_{CO_2} = 1.266, 1.345$, respectively). This is not surprising since it has already been established that ~ 0.1 equiv of CO_2 is produced during the thermolysis of Ru-(ONO)(CO)(NO)(PPh₃)₂ (eq 7b). Thus, the thermolysis of Ru(18ON18O)(CO)(NO)(PPh₃)₂ introduces some labeled CO₂ into the system regardless of whether or not exchange takes place. The extent of this enrichment can, in fact, be estimated since the amount of unenriched CO₂ admitted to the system is known and the ¹⁸O enrichment of the CO₂ formed in reaction 7b can be calculated from the known enrichment of $Ru(^{18}ON)^{18}O)(CO)$ -(NO)(PPh₃)₂. The calculated values of $^{46}E_{CO_2}$ (1.28, 1.29, respectively) are in reasonable agreement with the experimental values if it is assumed that 10% of the Ru(18ON18O)(CO)- $(NO)(PPh_3)_2$ reacts to form CO_2 (eq 7b) and that CO_2 does not exchange with Ru(18ON18O)(CO)(NO)(PPh₃)₂ or the reaction products.

It should be noted that these calculations do not depend on the extent of oxygen scrambling in the production of CO₂ by the intermediate $Ru(ONO)(CO)(NO)(PPh_3)_2$. It can be shown that the CO₂ produced by this intermediate will have the same ¹⁸O enrichment in the presence or absence of scrambling,³⁸ Thus, for both experiments the observed enrichment of the \overline{CO}_2 product is consistent with the formation of ~ 0.1 equiv of labeled CO₂ by the thermolysis of Ru(¹⁸ON¹⁸O)(CO)(NO)(PPh₃)₂. It would, therefore, seem that any exchange process involving free CO2 and Ru(ONO)(CO)(NO)(PPh₃)₂ is insufficient to account for the ¹⁸O enrichment observed in the labeling studies. Since the Ru- $(N^{18}O)(NO)(PPh_3)_2$ and $Ph_3P^{18}O$ produced in the thermolysis of $Ru(18ON18O)(CO)(NO)(PPh_3)_2$ are also in contact with the CO_2 , any possibility of substantial exchange between CO_2 and

$${}^{46}E_{\rm CO_2} = \frac{{}^{46}E_{\rm NO_2} - {}^{+46}E_{\rm CO}}{2} = \frac{6.69 + 1.00}{2} = 3.85$$

If statistical scrambling occurs,

$${}^{46}E_{\rm CO_2} = \frac{2({}^{46}E_{\rm NO_2}) + {}^{46}E_{\rm CO} + {}^{46}E_{\rm NO}}{4} = \frac{2(6.69) + 1.00 + 1.00}{4} = 3.85$$

⁽³⁵⁾ Keene, F. R.; Salmon, D. J.; Meyer, T. J. J. Am. Chem. Soc. 1977, 99, 4821.

⁽³⁶⁾ Feltham, R. D. Inorg. Chem. 1964, 3, 116. (37) Since four of the six oxygen atoms in the complex are labeled, the value of n_t for the limiting case of statistical scrambling is given by $n_t = (4/6)(2.00) = 1.33$.

⁽³⁸⁾ For Ru(${}^{18}ON{}^{18}O)(CO)(NO)(PPh_3)_2$, ${}^{46}E_{NO2}$ = 6.69 and ${}^{46}E_{CO}$ = E_{NO} = 1.00. If oxygen is transferred from N ${}^{18}O_2$ to CO, the enrichment ⁴⁶E_{NO} = of the CO_2 in the absence of scrambling is given by

Table II. Observed and Calculated Mass 47 Enrichments for CO_2 Derived from Double-Label Study^a

trial	A, ^b mmol	B, ^c mmol	${}^{47}\!E_{\rm CO_2}({\rm obsd})^d$	${}^{47}E_{CO_2}(calcd)$	
				intra- molecular	inter- molecular
1	1.186	0.601	27.7	22.6	27.8
2	0.376	0.188	26.4	22.4	27.5
3	0.196	0.446	45.8	42.2	47.1
4	0.186	0.370	44.9	40.6	45.8

^a See Experimental Section for explanation of terms. ^b A = $\operatorname{Ru}(N^{18}O_2)_2(CO)_2(PPh_2)_2$; ⁴⁷E_A = 4.17. ^c B = $\operatorname{Ru}(NO_2)_2({}^{13}CO)_2$ -(PPh₃)₂; ⁴⁷E_B = 59.0. ^d Estimated uncertainty ±2%.

either of these products is similarly eliminated.

An experiment was also conducted to examine the possibility of NO_2^- dissociation from $Ru(NO_2)_2(CO)_2(PPh_3)_2$. The thermolysis reaction was conducted in the usual way with unlabeled $Ru(NO_2)_2(CO)_2(PPh_3)_2$ except that excess $KN^{18}O_2$ was added to the solution. The recovered CO_2 showed no ¹⁸O enrichment (⁴⁶ $E_{CO_2} = 0.994$), indicating that NO_2^- does not dissociate from the complex during the reaction. Thus, free NO_2^- cannot be involved in the exchange of ¹⁸O.

It can thus be concluded from this series of control experiments that oxygen scrambling is an inherent feature of the oxygen-atom transfer process itself rather than the result of an independent simple exchange process. In other words, scrambling takes place *prior to* the loss of CO₂ and the formation of Ru(ONO)(CO)-(NO)(PPh₃)₂. The rate of oxygen scrambling must necessarily be faster than the rate of CO₂ loss since *statistical* distribution of the ¹⁸O label is observed in the CO₂ product.

It should be noted that these conclusions are not altered by the fact that ~10% of the CO₂ is formed in the second step (eq 7b) of the thermolysis reaction. Since statistical oxygen scrambling must occur prior to loss of CO₂ and formation of Ru(ONO)-(CO)(NO)(PPh₃)₂ (eq 6a), this intermediate will necessarily contain statistically scrambled oxygen atoms having the same enrichment as the CO₂. Thus, any CO₂ produced from Ru-(ONO)(CO)(NO)(PPh₃)₂ by reaction 7b must also have statistical ¹⁸O content.

¹⁸O and ¹³C Double-Label Study. A double-label study was carried out in an effort to determine whether the oxygen-atom transfer in eq 6a is an intramolecular or intermolecular process. Weighed amounts of the isotopically labeled complexes Ru- $(N^{18}O_2)_2(CO)_2(PPh_3)_2$ and $Ru(NO_2)_2(^{13}CO)_2(PPh_3)_2$ were mixed and allowed to undergo thermolysis as usual. Figure 1 shows the various isotopically labeled CO₂ species predicted on the basis of intramolecular and intermolecular reaction mechanisms. In particular, it should be noted that ¹³CO¹⁸O (mass 47) can only be produced by means of an intermolecular mechanism. However, Figure 1 clearly represents a vast oversimplification of the actual experiment in two ways. The scheme does not take into account the statistical scrambling of oxygen atoms which occurs during the thermolysis reaction. In addition, the experiment is complicated by the fact that a significant amount of ¹⁸O label exists in $Ru(NO_2)_2({}^{13}CO)_2(PPh_3)_2$ since the 94% ${}^{13}CO$ used to prepare the complex is also enriched in ${}^{18}O$. Thus, this complex is perhaps better represented as Ru(NO₂)₂(¹³C¹⁸O)₂(PPh₃)₂. Fortunately, both of these factors can be taken into account in the detailed calculations, and the general principle remains that intramolecular and intermolecular mechanisms predict different amounts of the species ¹³CO¹⁸O.

The results of the double-label study are listed in Table II together with the values of ${}^{47}E_{CO_2}$ calculated for general intramolecular and intermolecular oxygen-atom transfer mechanisms. These calculations³⁹ were made on a purely statistical basis using only the known ¹⁸O and ¹³C enrichments of the two labeled forms of $Ru(NO_2)_2(CO)_2(PPh_3)_2$. The calculations are thus independent of both the microscopic details of the mechanistic process by which oxygen-atom transfer and scrambling occur and the formulation of the associated intermediates or activated complexes. The only restriction built into the calculations is that prior to the loss of CO_2 the six oxygen atoms within each molecule (intramolecular) or the 12 oxygen atoms within each dimeric unit (intermolecular) must become indistinguishable. This restriction is, in fact, required for the *intramolecular* case by the results of the single-label studies. However, it is important to note that intermolecular scrambling of oxygen is *not* necessarily required by the single-label studies. The single-label results can be explained by simply requiring that statistical scrambling occur only *within* each molecule, independent of any mechanistic assumptions.

The latter point raises the interesting possibility of an alternative intermolecular oxygen-transfer mechanism in which statistical scrambling of oxygen occurs only on an *intramolecular* basis prior to *intermolecular* transfer of oxygen and concomitant loss of CO₂. It can be shown⁴⁰ that this model yields calculated ⁴⁷E_{CO₂} values which are indistinguishable from those of the intermolecular mechanism proposed earlier.

The experimental results (Table II) are not consistent with an intramolecular oxygen-atom transfer process, but are in excellent agreement with the values calculated on the basis of an intermolecular mechanism. The only restriction is that the intermolecular mechanism requires the statistical scrambling of either (1) all 12 oxygen atoms within the dimeric unit, or alternatively, (2) all 6 oxygen atoms within each molecule *prior to* formation of the dimeric unit. In the latter case, further scrambling within the dimeric unit is not required.

Unfortunately, our results afford little insight into either the nature of the dimeric unit involved in oxygen-atom *transfer* or the mechanistic details necessary to achieve statistical oxygen-atom *scrambling*. Indeed, it is not evident that a simple rearrangement, either before or after formation of the dimeric unit, would lead to both statistical distribution of the oxygen atoms and retention of one *O-bonded* NO_2^- ligand on each metal center. Clearly, the mechanistic process involved is complicated, and further speculation must await more experimental detail.

Regardless, the results of our labeling studies clearly establish that the irreversible *intramolecular* oxygen-atom transfer mechanism depicted in Scheme I is inadequate for the system at hand. Any correct mechanism must involve *intermolecular* oxygen-atom transfer via an intermediate (or intermediates) sufficiently long-lived to undergo statistical oxygen scrambling between nitrogen and carbon prior to the loss of CO₂. Based upon these results and the results of our previous study¹⁰ of the nickel system (eq 2), oxygen scrambling would appear to be the rule rather than the exception. Thus, irreversible intramolecular oxygen-atom transfer from coordinated NO₂⁻ to coordinated CO (Scheme I) has yet to be demonstrated experimentally.

Acknowledgment. Research support from the Research Corporation (to R.P.S.) is gratefully acknowledged. The authors also wish to thank Miami University for the direct purchase of the Bruker WH-90DS NMR spectrometer used in this work. We thank Mr. Mark Poisson-Chat Paley for his expertise in the design and construction of the apparatus used in our labeling experiments. Useful discussions with Mr. John Kilby of Prochem US Services Inc. are also acknowledged.

Supplementary Material Available: Calculations used in the double-label study (14 pages). Ordering information is given on any current masthead page.

⁽³⁹⁾ See Supplementary Material.

⁽⁴⁰⁾ See Supplementary Material. This result is an artifact of the low ¹⁸O enrichment used in order to achieve high sensitivity and precision on the RMS-11 isotope ratio mass spectrometer.